Functional Diversification of Thylakoidal Processing Peptidases in Arabidopsis thaliana
نویسندگان
چکیده
Thylakoidal processing peptidase (TPP) is responsible for removing amino-terminal thylakoid-transfer signals from several proteins in the thylakoid lumen. Three TPP isoforms are encoded by the nuclear genome of Arabidopsis thaliana. Previous studies showed that one of them termed plastidic type I signal peptidase 1 (Plsp1) was necessary for processing three thylakoidal proteins and one protein in the chloroplast envelope in vivo. The lack of Plsp1 resulted in seedling lethality, apparently due to disruption of proper thylakoid development. The physiological roles of the other two TPP homologs remain unknown. Here we show that the three A. thaliana TPP isoforms evolved to acquire diverse functions. Phylogenetic analysis revealed that TPP may have originated before the endosymbiotic event, and that there are two groups of TPP in seed plants: one includes Plsp1 and another comprises the other two A. thaliana TPP homologs, which are named as Plsp2A and Plsp2B in this study. The duplication leading to the two groups predates the gymnosperm-angiosperm divergence, and the separation of Plsp2A and Plsp2B occurred after the Malvaceae-Brassicaceae diversification. Quantitative reverse transcription-PCR assay revealed that the two PLSP2 genes were co-expressed in both photosynthetic tissues and roots, whereas the PLSP1 transcript accumulated predominantly in photosynthetic tissues. Both PLSP2 genes were expressed in the aerial parts of the plsp1-null mutant at levels comparable to those in wild-type plants. The seedling-lethal phenotype of the plsp1-null mutant could be rescued by a constitutive expression of Plsp1 cDNA but not by that of Plsp2A or Plsp2B. These results indicate that Plsp1 and Plsp2 evolved to function differently, and that neither of the Plsp2 isoforms is necessary for proper thylakoid development in photosynthetic tissues.
منابع مشابه
Characterization of a cDNA encoding the thylakoidal processing peptidase from Arabidopsis thaliana. Implications for the origin and catalytic mechanism of the enzyme.
We have identified and sequenced a cDNA containing a complete open reading frame for a putative 340-amino acid precursor of the thylakoidal processing peptidase from Arabidopsis thaliana. The predicted amino acid sequence of the protein includes regions highly conserved among Type I leader peptidases and indicates that the enzyme uses a serine-lysine catalytic dyad mechanism. Phylogenetic analy...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملTransport of Proteins into Chloroplasts
The transport of proteins across the thylakoid membrane in higher plant chloroplasts is usually mediated by an amino-terminal peptide extension which is subsequently removed by a specific thylakoidal processing peptidase. We have previously shown that the reaction specificity of this enzyme is very similar to those of signal peptidases located in the endoplasmic reticulum and bacterial plasma m...
متن کاملYeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کامل